Skip to main content
Pinpointing Plenty of Proteins - in a Single Cell
A decorative image of a protein's structure with a map marker in the center

The cell is the fundamental unit of life, but until recently, it was very difficult for researchers to study the activities of an individual cell. Even cells that have the same job in our bodies can differ from each other in what genes are turned on or off and in what proteins they produce, and those differences can be important for understanding human health and disease. Recent advances made it possible to investigate a handful of proteins from a single cell, but Dr. Nikolai Slavov, a 2016 recipient of the NIH Director’s New Innovator Award, just changed the game. His approach now allows researchers to study 100 to 1000 times more proteins in individual cells.

Dr. Slavov and his team used a common research technique called mass spectrometry, which breaks down proteins and analyzes their building blocks, but they took steps to enhance the technique. Before mass spectrometry, Slavov’s team isolated individual mammalian cells, careful not to lose much of the cells’ protein content. Next, the team inventively applied another approach, tagging protein building blocks from the individual cells. The chemical tags were recognizable during mass spectrometry data analysis and were traced back to the individual cells submitted for analysis.

Combining these two steps in an innovative manner greatly increased the number of proteins identified and traced to a particular cell. Putting it into practice, Dr. Slavov showed that he could create protein profiles for individual stem cells allowed to develop randomly into many different cell types making many different proteins. Dr. Slavov’s method helps researchers move to a more concrete understanding of individual cells and the organisms they make up. In the future, this understanding may help patients by identifying biological markers for precision medicine and regeneration therapies.


This page last reviewed on January 31, 2024