

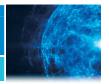
Program Description



The NIH Common Fund is a funding entity within NIH that supports bold scientific programs that catalyze discovery across all biomedical and behavioral research. These programs create a space where investigators and multiple NIH Institutes and Centers collaborate on innovative research expected to address high-priority challenges for NIH as a whole and make a broader impact in the scientific community. More information is available at commonfund.nih.gov.

The NIH Common Fund's High-Risk, High-Reward Research program was created to accelerate the pace of biomedical discoveries by supporting exceptionally creative scientists with highly innovative research ideas of unusually broad impact. Four initiatives within this program—the NIH Director's Pioneer, New Innovator, Transformative Research, and Early Independence Awards—serve distinct purposes in achieving this goal.

Pioneer Award: Supports scientists with outstanding records of creativity pursuing new research directions to develop pioneering approaches to major challenges in biomedical, social science, and behavioral research.


New Innovator Award: Supports unusually creative early-career stage investigators with highly innovative research ideas with the potential for broad impact.

Transformative Research Award: Supports individuals or teams proposing exceptionally innovative and/or unconventional research projects that have the potential to create or overturn fundamental paradigms.

Early Independence Award: Supports outstanding junior scientists with the intellect, scientific creativity, drive, and maturity to bypass the traditional postdoctoral training period to launch independent research careers.

Agenda

Thursday, June 8, 2023

9:00 a.m. Trish Labosky, Program Leader in the Office of Strategic

Coordination, OD, NIH

Welcome and Opening Remarks

Session 1

9:15 a.m. Yongxin (Leon) Zhao, Carnegie Mellon University

New Innovator Award

Magnify: Next Generation Expansion Microscopy with a Universal Molecule Anchoring Strategy, the Applications

and Bevond

9:35 a m Hsiao-Tuan Chao, Baylor College of Medicine

Early Independence Award

Cerebellar Dysfunction in Autism Spectrum and Neurodevelopmental Disorders: From Discovery

Genetics to Translational Neuroscience

Nikhil Malvankar, Yale University 9:55 a.m.

New Innovator Award

Wiring Cells: Control of Microbial Electron Export Using

Natural and Synthetic Protein Nanowires

10:15 a.m. **BREAK**

Session 2

10:35 a.m. Jennifer Elisseeff, Johns Hopkins University

Pioneer Award

Biomaterials-Directed Regenerative Immunology

10:55 a.m. Andrew Leifer, Princeton University

New Innovator Award

Neural Signal Propagation Atlas of C. elegans

11:15 a.m. Siyuan Wang, Yale University

New Innovator Award

*National Institute of General Medical Sciences

High-Content Image-Based CRISPR Screening Reveals

Regulators of 3D Genome Architectures

PHOTOSHOOT FOR ALL HRHR AWARDEES 11:35 a.m.

12:00 p.m. LUNCH (ON YOUR OWN)

POSTER SESSION 1:10 p.m.

(Cordell, Wisconsin)

NIH STAFF OFFICE HOURS 1:10 p.m.

(Bethesdan A, Rosedale, Arlington, Auburn, Rugby)

Session 3

3:00 p.m. Brian Chait, The Rockefeller University

Transformative Research Award

Nature-Inspired Device for Next Generation Mass

Spectrometry

Megan Dennis, University of California, Davis 3:20 p.m.

New Innovator Award

Gene Expansions Contributing to Human Brain

Evolution

BREAK 3:40 p.m.

Session 4

4:00 p.m. Daniel Gallego-Perez, The Ohio State University

New Innovator Award

*Other Office of the Director appropriations

Cell- and Tissue Nanotransfection-Driven Therapies for Neurodegenerative Conditions and Metabolic Disorders

Gilad Evrony, New York University Grossman School of 4:20 p.m.

Medicine

Early Independence Award

Single-Molecule DNA Sequencing of Single-Strand

Mismatch and Damage Patterns

4:40 p.m. Kendra Frederick, University of Texas Southwestern

Medical Center

New Innovator Award

Structural Determination of Neurodegenerative Disease-

Associated Proteins Inside Cells

NETWORKING HAPPY HOUR 5:00 p.m.

Fialova Bar (Hotel lobby)

Friday, June 9, 2023

8:30 a.m. **Bob Eisinger**, Acting Director of the Division of Program

Coordination, Planning, and Strategic Initiatives, OD,

NIH

Opening Remarks

Session 5

8:45 a.m. Christoph Thaiss, University of Pennsylvania

> New Innovator Award *National Institute on Aging

Body-Brain Communication: A New Frontier in

Biomedicine

9:05 a.m. Arjun Raj, University of Pennsylvania

Transformative Research Award

How Do Cells Learn New Types?

9:25 a.m. Tara Deans, University of Utah

New Innovator Award

Utilizing Synthetic Biology to Advance Therapeutics

9:45 a.m. Courtney Yuen, Brigham and Women's Hospital

New Innovator Award

Improving the Equity of Community-Based Screening Programs Through Innovative Analytic Approaches

10:05 a.m. **BRFAK**

Session 6

10:25 a.m. **Jerry Chen**, Boston University

New Innovator Award

CRACKing Cortical Circuits Underlying Learning and

Behavior

10:45 a.m. **Anne-Ruxandra Carvunis**, University of Pittsburgh

New Innovator Award

From Non-Coding to Coding: Uncovering the Hidden Coding Potential of Non-Coding Sequences and Its Role

in De Novo Gene Evolution

11:05 a.m. **Jeffrey Macklis**, Harvard University

Pioneer Award

Building, Maintaining, or Regenerating Diverse Brain Circuitry Is Complex: Subtype-Specific and Dynamic Subcellular Molecular Machinery in Cerebral Cortex

11:25 a.m. Raymond Moellering, The University of Chicago

New Innovator Award

*National Institute of General Medical Sciences

Direct Targeting of Oncogenic Transcription Factors with

Synthetic Transcriptional Repressors

11:45 a.m. Medha Pathak, University of California, Irvine

New Innovator Award

A Novel Tool to Study Endogenous Human Piezo1 from

Single Cells to Tissue Organoids

12:05 p.m. **LUNCH (ON YOUR OWN)**

1:10 p.m. **POSTER SESSION**

(Cordell, Wisconsin)

1:10 p.m. **NIH STAFF OFFICE HOURS**

(Bethesdan A, Rosedale, Arlington, Auburn, Rugby)

Session 7

3:00 p.m. Shixin Liu, The Rockefeller University

New Innovator Award

Machines on Genes: A Single-Molecule Perspective

3:20 p.m. Kamena Kostova, Carnegie Mellon University

Early Independence Award

Ribosomal Quality Control

3:40 p.m. **BREAK**

Session 8

Jonathan Brestoff, Washington University 4:00 p.m.

Early Independence Award

Mitochondria Transfer Rescues Aerobic Respiration in

Metabolically Compromised Macrophages

4:20 p.m. Sabrina Spencer, University of Colorado Boulder

New Innovator Award

Control of the Proliferation-Quiescence Decision at the

Single-Cell Level

4:40 p.m. Sidi Chen, Yale University

> New Innovator Award *National Cancer Institute

Genome Engineering for, of, and as Immunotherapy

Trish Labosky, Program Leader in the Office of 5:00 p.m.

Strategic Coordination, OD, NIH

Closing Remarks

Poster Sessions

Poster Number 1

Adam Bailey, University of Wisconsin-Madison FcRn Is a Pan-Arterivirus Receptor

Poster Number 2

Adam Bailey, University of Wisconsin-Madison Mapping the Determinants of Viral Hemorrhagic Fever (VHF) in Yellow Fever Virus (YFV)

Poster Number 3

Andrew Beel, Stanford University Principles of Mitotic Chromosome Structure

Poster Number 4

Anne Nigra, Columbia University

Novel US Nationwide Estimates of Regulated Public Water Contaminants at Various Spatial and Temporal Resolutions for Epidemiologic Study

Poster Number 5

Brian Koss, University of Arkansas for Medical Sciences

Discovering T Cell Proteome Turnover Dynamics to Enhance Persistence in Solid Tumors

Poster Number 6

Danny Miller, University of Washington

Long-Read Sequencing to Identify Missing Disease-Causing Genetic Variation and Reduce Barriers to Comprehensive Genetic Evaluation

Poster Number 7

Jacob Capin, Marquette University

Long-Term Benefits and Challenges of Competitive Sport: The Lived Experience of Midlife Former College Athletes

Poster Number 8

Magnus Hoffmann, California Institute of Technology

Self-Assembling EABR Virus-Like Particles as a Platform Technology for Hybrid mRNA Vaccines

Margaux Pinney, University of California, San Francisco

Mapping and Dissecting Enzyme Sequence-Function-Fitness Landscapes with Microfluidics and Deep-Learning

Poster Number 10

Steven Jonas, University of California, Los Angeles

Chemically-Modified Filtroporation Devices Enable CRISPR/Cas9-Mediated Gene Knockout in Human Hematopoietic Stem and Progenitor Cells

Poster Number 11

Yun Li, City of Hope National Medical Center

Metabolic Modulation Sensitizes Prostate Cancer Cells to Radiotherapy

Poster Number 12

Aaron Young, Georgia Institute of Technology

Towards Co-Adaptive AI Strategies for Personalizing Wearable Robotic Control to Individuals with Mobility Deficits

Poster Number 13

Alex Pollen, University of California, San Francisco

Cell Type Evolution in the Primate Brain

Poster Number 14

Alexandra-Chloe Villani, Harvard Medical School

Deciphering the Achilles Heel of Cancer Immunotherapy

Poster Number 15

Alison Feder, University of Washington

State-Dependent Evolutionary Models Reveal Modes of Solid Tumor Growth

Poster Number 16

Anindita Basu, University of Chicago

Integration of Silicon Chip Microstructures in Soft Microfluidic Device for In-Line Microbial Cell Lysis and Characterization

Poster Number 17

Arthur Beyder, Mayo Clinic

Does the Gut Feel Touch?

Poster Number 18

Carlos Ponce, Harvard Medical School

The Shapes of Filters in Biological and Artificial Networks

Poster Number 19

Carlos Vargas-Irwin, Brown University

Synergistic Environment/Effector Decoding: Augmenting Neural Signals with Surrogate Sensory Inputs

Cressida Madigan, University of California, San Diego

M. tuberculosis Crosses the Blood-Brain Barrier Through Endothelial ZO-1 Rings

Poster Number 21

Dwi Kemaladewi, University of Pittsburgh

Implications of Genetic Diversity in Muscular Dystrophy

Poster Number 22

Evgeny Kvon, University of California, Irvine

How Important Is Enhancer-Promoter Looping for Gene Activation?

Poster Number 23

Fleur Ferguson, University of California, San Diego

Chemical Control of Misfolded Protein Fate

Poster Number 24

Hadi Nia, Boston University

Crystal Ribcage: A Platform for Probing Real-Time Lung Function at Cellular Resolution in Health and Disease

Poster Number 25

Joe Delaney, Medical University of South Carolina

Haploinsufficiency SWAN Networks in Cancer Aneuploidy Highlight Autophagy and Metallothioneins as Targetable Vulnerabilities

Poster Number 26

Joh Schöneberg, University of California, San Diego

4D Cell Biology: Adaptive Optics Lattice Light-Sheet Imaging and Al-Powered Big Data Processing of Live Stem Cell-Derived Organoids

Poster Number 27

Johnny Blazeck, Georgia Institute of Technology

Remediating Immunosuppressive Metabolic Changes in Solid Tumors

Poster Number 28

Justin English, University of Utah

High Fidelity Single Molecule Long Read Sequencing of Viral Genomes for Quasispecies Diversity Mapping

Poster Number 29

Justin English, University of Utah

Tunable Microscale Transcriptional Response Elements for Programming Cellular Output

Katharine White, University of Notre Dame

Spatiotemporal Intracellular pH (pHi) Dynamics Regulate the Cell Cycle and Dysregulated pHi Drives Cytokinesis Defects

Poster Number 31

Ke Xu, University of California, Berkeley

Unveiling Nanoscale Heterogeneities in Biomolecular Interactions and Condensates Through Multidimensional Super-Resolution Microscopy

Poster Number 32

Mandar Muzumdar, Yale University

Intra-Organ Signaling Drives the Development of Pancreatic Cancer

Poster Number 33

Miles Miller, Harvard Medical School

Interrogating the Spatial Dynamics of Inflammation Using Image-Guided Synthetic Control

Poster Number 34

Opevemi Olabisi. Duke University School of Medicine

APOL1 G1-Mediated Cation Transport Inhibits Amino Acid Transport and Increases Endoplasmic Reticulum Calcium Release, Causing Podocytopathy

Poster Number 35

Paul Blainey, Broad Institute

Profiling and Perturbing Cancer Cell Plasticity with In Situ Sequencing-Compatible Genetic Lineage Recorders

Poster Number 36

Rachel Buckley, Harvard Medical School

Genes That Escape X Chromosome Inactivation Are Associated with Alzheimer's Disease Clinicopathology

Poster Number 37

Rizal Hariadi, Arizona State University

GPCR-Inspired Molecular Devices for Live-Cell Isolation Targeting Cytosolic Biomarkers

Poster Number 38

Rui Chang, Yale University

The Coding Logic of Interoception

Poster Number 39

Subhamoy Dasgupta, Roswell Park Comprehensive Cancer Center

Sung Soo Kim, University of California, Santa Barbara

The Connectome of Visual Pathways to the Drosophila Compass System

Poster Number 41

Thomas Longden, University of Maryland Baltimore

Vascular Signaling Plasticity Reprograms Neurovascular Coupling Pathways to Precisely Match Energy Delivery to Neuronal Metabolic Needs

Poster Number 42

Viviana Risca, The Rockefeller University

Regulation of Sub-Kilobase Chromatin Folding

Poster Number 43

Xiaolu Cambronne, The University of Texas at Austin

Metabolic Control of Cell Signaling and Disease

Poster Number 44

Xiaoyin Chen, Allen Institute

Mapping Synaptic Connectivity at Scale by *In Situ* Sequencing of Barcoded Rabies Virus

Poster Number 45

Xiaoyu Shi, University of California, Irvine

Molecular-Resolution Imaging and Subcellular Multiomics for Cell and Brain Profiling

Poster Number 46

Zheng Kuang, Carnegie Mellon University

Histone Deacetylase 3 Programs Diurnal Rhythms in Tuft Cell Biogenesis and Type 2 Immunity

Poster Number 47

Zhilei Chen, Texas A&M University

DARPin-Based Protein Therapeutics

Poster Number 48

Brian Litt, University of Pennsylvania

Ghost in the Machine: Epilepsy Devices That Communicate with Their Hosts

Poster Number 49

Kathleen Collins, University of California, Berkeley

Site-Specific Safe-Harbor Transgene Supplementation of the Human Genome by RNA-Only Delivery

Z. Josh Huang, Duke University School of Medicine

Programmable RNA Sensing for Brain Cell Type Monitoring and Manipulation Across Species

Poster Number 51

Ben Black, University of Pennsylvania

Efficient Formation of Single-Copy Human Artificial Chromosomes

Poster Number 52

Bonnie Dittel, Versiti Blood Research Institute

Generation of a Universal B Cell IgD Low (BDL)-based Adoptive Cell Therapy for the Treatment of Autoimmunity

Poster Number 53

Carlos Lois, California Institute of Technology

MEMOIR: Engineering Cells to Record Their Own Lineage and Event Histories

Poster Number 54

Faraz Bishehsari. Rush University

Circadian Transcriptome of Pancreatic Adenocarcinoma Could Be Tumor Specific

Poster Number 55

Julie Andersen, Buck Institute for Research on Aging

Drug-Delivering Smart Cells to End Alzheimer's Disease: Early Progress

Poster Number 56

Steven Schiff, Yale University

Neonatal Paenibacilliosis: Discovery of a New Disease-Causing Sepsis and Hydrocephalus in African Infants

Poster Number 57

Xiayan Li, University of Michigan

ALS Survival Associates with Whole Blood DNA Methylation Age Acceleration with Hypomethylation of Transposable Elements

Poster Number 58

Yue Zhao, University of Michigan

Whole Blood Transcriptome Analyses Reveal Heterogeneity in Amyotrophic Lateral Sclerosis

2022 Awardees

NIH Director's Pioneer **Awardees**

Long Cai, Ph.D., California Institute of Technology

Single Cell Analysis of the Kinome

Kafui Dzirasa, M.D., Ph.D., Duke University

Precision Editing of Neural Circuits Using Engineered Electrical Synapses

Yamuna Krishnan, Ph.D., University of Chicago

Intracellular Electrophysiology: An Electrochemical Atlas of Organelles

Gabe A. Kwong, Ph.D., Georgia Institute of Technology

Finding Sleeping Beauty: T Cell Biosensors for Dormant Cancer Detection

Celeste M. Nelson, Ph.D., Princeton University

Mechanical Clocks During Fetal Development

Amanda Randles, Ph.D., Duke University

Dynamic Models of the Cardiovascular System Capturing Years, Rather Than Heartbeats

* National Institute on Aging (NIA)

Sherri Rose, Ph.D., Stanford University

A Framework for the Social Impact of Algorithms in Health Care

Sara L. Sawyer, Ph.D., University of Colorado, Boulder

Breaking the Barrier to an HIV Vaccine

NIH Director's **New Innovator Awardees**

Farshid Alambeigi, Ph.D., University of Texas at Austin

A Novel Semi-Autonomous Surgeon-in-the-Loop In Situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries

Rachel N. Arey, Ph.D., Baylor College of Medicine

Uncovering Brain-Wide Molecular Determinants of Individual Memory Performance Across Lifespan

Michael Beyeler, Ph.D., University of California, Santa Barbara

Towards a Smart Bionic Eye: Al-Powered Artificial Vision for the Treatment of Incurable Blindness

John James Blazeck, Ph.D., Georgia Institute of Technology

Synthetic Metabolism to Armor and Enhance a New Class of Cell Therapies

Rachel Buckley, Ph.D., Harvard Medical School

The Inactive X: Discovering Sex Genes That Influence Female Vulnerability to Alzheimer's Disease *National Institute on Aging (NIA)

Lindsay Case, Ph.D., Massachusetts Institute of Technology

New Insights into the Molecular Regulation of Mechanotransduction *National Institute of General Medical Sciences (NIGMS)

Michelle M. Chan, Ph.D., Princeton University

Building a Systematic, Comprehensive Mammalian Cell Fate Map

Chi-Lun Chang, Ph.D., St. Jude Children's Research Hospital

Understanding Metabolism in Space and Time—Mechanistic Analysis of the Dynamic Spatial Organization of Metabolism *National Institute of General Medical Sciences (NIGMS)

^{*}Award co-funding indicator

Alejandro (Alex) Chavez, M.D., Ph.D., University of California, San Diego

Methods to Rapidly Explore Combinatorial Diversity and Their Application to CRISPR-Cas9 Systems

Lucas Cheadle, Ph.D., Cold Spring Harbor Laboratory

Neuroimmunological Insights into Brain Development and Dysfunction: An Integrative Approach Focused on Microglial Dynamics *National Institute of Mental Health (NIMH)

Xiaoyin Chen, Ph.D., Allen Institute

Unraveling the Developmental Logic of Cortical Long-Range Projections Using *In Situ* Sequencing-Based Neuroanatomy

Jan Christoph, Ph.D., University of California, San Francisco

Al-Assisted Imaging and Prediction of Cardiac Arrhythmia Origins Using 4D Ultrasound

Tyler R. Clites, Ph.D., University of California, Los Angeles

Compliant Limb Reconstruction: Co-Engineering Body and Machine to Revolutionize Limb Salvage

Joe R. Delaney, Ph.D., Medical University of South Carolina

Tumor Suppressor Vulnerability Conferred by Aneuploid Loss of Haploinsufficient Metallothionein Genes

Fangyuan Ding, Ph.D., University of California, Irvine

Universally Applicable RNA Mapping at Subcellular and Single-Base Resolution

*National Institute of General Medical Sciences (NIGMS)

Luisa Escobar-Hoyos, Ph.D., M.Sc., Yale University

Unleashing T Cell Anti-Tumor Response Through Repair of Altered RNA Splicing and Antigen Mimicry Recognition

Amelia Escolano, Ph.D., Wistar Institute

Manipulating Epitope Immunodominance and Tracking B-Cell-Antigen Interactions for Vaccine Design

Alison Feder, Ph.D., University of Washington

A Phylodynamic Time Machine for Solid Tumors

Fleur M. Ferguson, Ph.D., University of California, San Diego

Chemical Control of Misfolded Protein Fate

Yvette Fisher, Ph.D., University of California, Berkeley

How Does Neuromodulation Shape the Fluidity of Spatial Working Memory?

Vikram Gadagkar, Ph.D., Columbia University

The Female Songbird as a Novel Mechanistic Model for the Neural Basis of Social Evaluation

Felipe Garcia Quiroz, Ph.D., Emory University

Multifunctional Phase Sensors for Probing and Manipulation of Intracellular Biomolecular Condensates

Jellert Gaublomme, Ph.D., Columbia University

Spatially Mapping of Pooled In Vivo CRISPR Screens in the Tumor Microenvironment

*Common Fund (CF) and National Cancer Institute (NCI)

Emily L. Goldberg, Ph.D., University of California, San Francisco

Discovering Mechanisms of Tissue-Resident Immune Aging

Adam Granger, Ph.D., Harvard University

High-Throughput Methods for Measuring Cortical Synaptic Connectivity at Single-Cell Resolution

Nathan D. Grubaugh, Ph.D., Yale University

Enhancing Dengue Virus Genomic Surveillance to Uncover Circulating Genetic Diversity

Gavin Ha, Ph.D., University of Washington

Translating the Tumor Regulome from Cell-Free DNA for Precision Oncology

Siniša Hrvatin, Ph.D., Whitehead Institute for Biomedical Research

Biology and Applications of Mammalian Hibernation-Like States

Hidehiko Inagaki, Ph.D., Max Planck Florida Institute for Neuroscience

A Novel Approach to Crack Neuronal Mechanisms That Shape Computations in the Brain

^{*} National Institute of Mental Health (NIMH)

Chengcheng Jin, Ph.D., University of Pennsylvania

A Blueprint for Neutrophil Heterogeneity and Reprogramming in Cancer

Alok V. Joglekar, Ph.D., University of Pittsburgh

Signaling via MHC: Engineering Immune Cells with New Capabilities

Benjamin P. Kleinstiver, Ph.D., Harvard Medical School

Scalable Development of Custom Genome Editing Technologies

Zheng Kuang, M.D., Carnegie Mellon University

Microbial Regulation of Mammalian Circadian Rhythms and the Sexual Dimorphism: From Metabolism to Immunity

Aditya M. Kunjapur, Ph.D., University of Delaware

Boosting Efficacy of Oral Vaccine Candidates by Enabling Spore Display of Nitrated Antigens

Evgeny Kvon, Ph.D., University of California, Irvine

Deciphering the Mechanism of Long-Range Gene Regulation In Vivo *National Institute of General Medical Sciences (NIGMS)

Audrone Lapinaite, Ph.D., Arizona State University

Engineering Novel Precision Genome Editing Tools *National Institute of General Medical Sciences (NIGMS)

Zhongwei Li, Ph.D., University of Southern California

The Synthetic Kidney: A Revolutionary Solution for the Shortage of Kidneys for Transplantation

Ci Ji Lim, Ph.D., University of Wisconsin-Madison

Unraveling the Telomere Black Box: A New Single-Molecule Approach to Define the Telomere Chromatin Landscape and Its Functional Mechanisms

*National Institute of General Medical Sciences (NIGMS)

Christopher Makinson, Ph.D., Columbia University Health Sciences

Unlocking the Postnatal Human Brain Using Activity Augmented Organoids

*National Institute of Mental Health (NIMH)

Steven E. Mansoor, M.D., Ph.D., Oregon Health & Science University

Elucidation of P2X7 Receptor Signaling and Development of Novel Small Molecule and Aptamer Ligand Therapies

*National Institute of General Medical Sciences (NIGMS)

Aaron McKenna, Ph.D., Dartmouth College

Annotated Lineage Trees of Murine Development

Kara L. McKinley, Ph.D., Harvard University

Life History of the Menstruating Uterus

Ellis Monk, Ph.D., Harvard University

The Optics of Health: Race Skin Tone Minority Health and Health Disparities in the U.S.

*National Institute of Mental Health (NIMH)

Shyamal Mosalaganti, Ph.D., University of Michigan at Ann Arbor

In Situ Architecture of Membrane Contact Sites Mediating Organelle Fission

*National Institute of General Medical Sciences (NIGMS)

Maral Mousavi. Ph.D., University of Southern California

Building a Two-Way Communication System: Bio-Orthogonal Superhydrophobic Nanoparticles for Controlled Stimulation and Real-Time Sensing of Neurotransmitters

*National Institute of General Medical Sciences (NIGMS)

Ruvandhi Nathavitharana, M.D., M.P.H., Harvard Medical School

THWART-TB: Testing Health Workers at Risk to Advance Our Understanding of TB Infection

Hadi T. Nia, Ph.D., Boston University

Probing Functioning Lung at the Cellular Resolution in Health and Disease

Tagbo H. R. Niepa, Ph.D., University of Pittsburgh

Designing a High-Throughput Platform to Bioprospect the Human Microbiome and Manipulate Its Interplay with Host Environments *National Institute of General Medical Sciences (NIGMS)

C. Denise Okafor, Ph.D., The Pennsylvania State University

Improving Drug Design to Eliminate Side Effects: From Computational to Animal Models

Rebecca L. Pearl, Ph.D., University of Florida

Transdiagnostic Intervention to Reduce Internalized Health-Related Stigma

Carlos R. Ponce, M.D., Ph.D., Harvard Medical School

Defining Mechanisms for Natural Vision in the Primate Brain with Machine Learning

Bushra Raj, Ph.D., University of Pennsylvania

Genomic Tools for Massively Parallel Recording of Signaling Activity at Cellular Resolution in a Brain-Wide Manner

Viviana I. Risca, Ph.D., The Rockefeller University

Cross-Regulation Between Loop Extrusion, Chromatin Fiber Structure, and Chromatin-Associated RNAs

*National Institute of General Medical Sciences (NIGMS)

Silvi Rouskin, Ph.D., Harvard Medical School

Constructing The Nest—Understanding the Mechanisms of Nidoviridae RNA Genomes Transcription and Recombination

Serena Sanulli, Ph.D., Stanford University

Harnessing the Chromatin Conformational Code for Epigenetic Regulation

Deblina Sarkar, Ph.D., Massachusetts Institute of Technology

Circulatronics: A New Paradigm for Biomedical Implants

Johannes Schöneberg, Ph.D., University of California, San Diego

Decode Mitochondrial Morphology Dynamics to Predict Cell Fate Decisions

*National Institute of General Medical Sciences (NIGMS)

Debattama Sen, Ph.D., Harvard Medical School

Dissecting the Enhancer Logic Governing Immune Cell Fate Decisions

Xiaoyu Shi, Ph.D., University of California, Irvine

Gel-Based Optical-Isolation Single-Cell 3D Spatial Multiomics

Mark A. Skylar-Scott, Ph.D., Stanford University

Trillion Cell Culture to Fuel Organ Biofabrication National Institute of General Medical Sciences (NIGMS)

Joanna Smeeton, Ph.D., Columbia University

Deciphering Multi-Scale Differentiation and Patterning Cues Driving Whole Craniofacial Joint Regeneration

Berna Sozen, Ph.D., Yale University

Deciphering Principles of Human Embryonic Patterning in Development and Disease

Sergey Stavisky, Ph.D., University of California, Davis

Understanding and Restoring Speech Production Using an Intracortical Brain-Computer Interface

AJ te Velthuis, Ph.D., Princeton University

Structure and Dynamics of RNA Elements Regulating Viral Aberrant RNA Synthesis

Summer Thyme, Ph.D., University of Alabama, Birmingham

Defining the Chemical Perturbome of Neural Development and Activity

Caroline Uhler, Ph.D., Harvard Medical School

Causal Representation Learning for the Spatial Analysis of Transcriptomic and Imaging Data in Tissue

David Van Valen, M.D., Ph.D., California Institute of Technology

Unraveling the Genetic Basis of Cellular Behaviors with Deep Learning and Imaging-Based Reverse Genetics

*National Institute of General Medical Sciences (NIGMS)

Chao Wang, Ph.D., Arizona State University

Integrated Nano-Opto-Fluidic System on Sapphire Towards Single-Molecule Protein Sequencing

*National Institute of General Medical Sciences (NIGMS)

Sihong Wang, Ph.D., University of Chicago

Immunocompatible Electronic Polymers and Devices for Implantable Sensors and Stimulators That Resist Foreign-Body Responses

Wenjing Wang, Ph.D., University of Michigan, Ann Arbor

New Classes of Optogenetic and Chemogenetic Tools with a Feedback Control

Amy M. Weeks, Ph.D., University of Wisconsin, Madison

Post-Translational Modification Proteomics in 4D: Cemoenzymatic Tools to Map the Dynamic Spatial Organization of Eukaryotic Signaling **Pathways**

*National Institute of General Medical Sciences (NIGMS)

Aaron T. Whiteley, Ph.D., University of Colorado

Deciphering the Crosstalk Between Bacteria and Their Mammalian Hosts

Aaron J. Young, Ph.D., Georgia Institute of Technology

A New Framework for Self-Adaptive Artificial Intelligence to Personalize Assistance for Patients Using Robotic Exoskeletons and Prostheses

NIH Director's Transformative Research **Awardees**

Julie K. Andersen, Ph.D., Buck Institute for Research on Aging

A Smart Cell Drug (SmaCD) Delivery Platform for Mobile, Targetable, and Self-Regulated Combination Therapy: A Model Project to Rescue Antibodies from Alzheimer's Disease (AD) Clinical Trial Failures

Eva S. Anton, Ph.D., University of North Carolina at Chapel Hill

Primary Cilia: A Novel Signaling Gateway to Neural Circuit Modulation

Theodore P. Beauchaine, Ph.D., University of Notre Dame

Leveraging Noninvasive Transcutaneous Vagus Nerve Stimulation and Smartphone Technology to Reduce Suicidal Behaviors and Suicide Among Highly Vulnerable Adolescents

Faraz Bishehsari, M.D., Ph.D., Rush University Medical Center

Development of a Precision Medicine Platform for Circadian-Based Therapeutics in Pancreatic Cancer

Donita C. Brady, Ph.D., University of Pennsylvania

Unlocking the Chemical Space of Cancer-Associated Perturbations

George M. Burslem, Ph.D., University of Pennsylvania

Unlocking the Chemical Space of Cancer-Associated Perturbations

Luca Busino, Ph.D., University of Pennsylvania

Unlocking the Chemical Space of Cancer-Associated Perturbations

Michael Fischbach, Ph.D., Stanford University

Building the Foundations of Commensal Vaccines

Terence P. Gade, M.D., Ph.D., University of Pennsylvania

Unlocking the Chemical Space of Cancer-Associated Perturbations

Chris Garcia, Ph.D., Stanford University

A Global Map of Interactions Among Human Cell Surface Proteins and Secreted Ligands

Hani Goodarzi, Ph.D., University of California, San Francisco

Leveraging Natural Phenotypic Variations of Heterogenous ALS Populations-In-A-Dish to Enable Scalable Drug Discovery

Justin Ichida, Ph.D., University of Southern California

Leveraging Natural Phenotypic Variations of Heterogenous ALS Populations-In-A-Dish to Enable Scalable Drug Discovery

Jeff Lichtman, M.D., Ph.D., Harvard University

Primary Cilia: A Novel Signaling Gateway to Neural Circuit Modulation

Arielle H. Sheftall, Ph.D., University of Rochester

Leveraging Noninvasive Transcutaneous Vagus Nerve Stimulation and Smartphone Technology to Reduce Suicidal Behaviors and Suicide Among Highly Vulnerable Adolescents

Matthew Thomson, Ph.D., California Institute of Technology

A Global Map of Interactions Among Human Cell Surface Proteins and Secreted Ligands

Kristin Valentino, Ph.D., University of Notre Dame

Leveraging Noninvasive Transcutaneous Vagus Nerve Stimulation and Smartphone Technology to Reduce Suicidal Behaviors and Suicide Among Highly Vulnerable Adolescents

Mark J. Van Ryzin, Ph.D., University of Oregon

Transforming Adolescent Mental Health Through Accessible, Scalable, Technology-Supported Small-Group Instruction

Eric Witze, Ph.D., University of Pennsylvania

Unlocking the Chemical Space of Cancer-Associated Perturbations

Ryohei Yasuda, Ph.D., Max Planck Florida Institute for Neuroscience

Primary Cilia: A Novel Signaling Gateway to Neural Circuit Modulation

Kai Zinn, Ph.D., California Institute of Technology

A Global Map of Interactions Among Human Cell Surface Proteins and Secreted Ligands

NIH Director's Early Independence Awardees

Corina Amor Vegas, M.D., Ph.D., Cold Spring Harbor Laboratory

Deconstructing Aging with Senolytic CAR T Cell

Andrew J. Beel, M.D., Ph.D., Stanford University

Structure and Pharmacologic Modulation of the Mitotic Chromosomes Central Axis

Alexander Gitlin, M.D., Ph.D., Memorial Sloan Kettering Cancer Center

Insights from Complex Immune Disorders: How an Apoptotic Caspase Unleashes Inflammation

Gary Grajales-Reyes, M.D., Ph.D., Washington University St. Louis

CAR-Based Approaches for the Treatment of Alzheimer's Disease * National Institute on Aging (NIA)

Lisa C. Hiura, Ph.D., University of Colorado

Functional Ontogeny of Pair Bonding Neural Circuits

Magnus Hoffmann, Ph.D., M.Pharm., California Institute of Technology

Self-Assembling Spike-EBR Nanoparticles as a Vaccine Platform Technology Against SARS-CoV-2 and Future Pandemic Coronaviruses

Yun Rose Li, M.D., Ph.D., City of Hope National Medical Center

Biomarkers, Mechanisms and Modulation of Oxidative Stress Associated Risk Factors in Carcinogenesis

Danny E. Miller, M.D., Ph.D., University of Washington

Long-Read DNA and RNA Sequencing to Identify Disease-Causing Genetic Variation and Streamline Testing

Sarah R. Ocañas, Ph.D., Oklahoma Medical Research Foundation

Sex Chromosomal Regulation of Hippocampal Microglial Activation with Alzheimer's Disease and Aging

Margaux Pinney, Ph.D., University of California, San Francisco

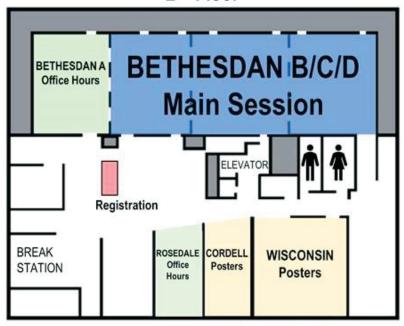
Leveraging Adaptive Evolution and High-Throughput Techniques to Dissect the Link Between Biochemical Function and Fitness

Andy Terker, M.D., Ph.D., Vanderbilt University Medical Center Innovative Therapeutic Approaches to Treat Chronic Kidney Disease

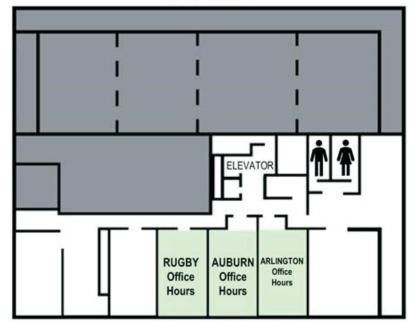
Mary D. Willis, Ph.D., M.P.H., Boston University Medical Campus

A Preconception Cohort Study on Oil and Gas Development, Fertility. and Pregnancy

Bo Xia, Ph.D., Harvard University


Transposable Element Interaction and Its Impact on Human Development and Health

Andrew C. Yang, Ph.D., University of California, San Francisco


Molecular Tools to Decipher Communication Across the Blood-Brain Barrier

The Bethesdan Hotel

2nd Floor

3rd Floor

Notes

lotes	

lotes	

lotes	

lotes	

Scan this QR Code to visit the 2023 High-Risk High-Reward Research Symposium website.

https://commonfund.nih.gov/symposium